TFHub
![[TF Hub] 사전 훈련된 모델 사용하기](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdna%2FbdG6DH%2FbtrslU5Ypp3%2FAAAAAAAAAAAAAAAAAAAAAKkw6UAkyJq081lEekV7h3DQomOb4ZOn_g8s7mRnzebr%2Fimg.png%3Fcredential%3DyqXZFxpELC7KVnFOS48ylbz2pIh7yKj8%26expires%3D1753973999%26allow_ip%3D%26allow_referer%3D%26signature%3DqEMx78H4ECrZ68EfrU3rTWPFarE%253D)
[TF Hub] 사전 훈련된 모델 사용하기
1. Transfer Learning 이란? 규모가 매우 큰 DNN 모델을 학습 시킬 때 처음부터 새로 학습 시키는 것은 학습 속도가 느린 문제가 있다. 이러한 경우 기존에 학습된 비슷한 DNN모델이 있을 때 이 모델의 하위층(lower layer)을 가져와 재사용하는 것이 학습 속도를 빠르게 할 수 있을 뿐만아니라 학습에 필요한 Training set도 훨씬 적다. 예를 들어, 아래의 그림처럼 CIFAR10 데이터셋을 분류(비행기, 자동차, 새, 고양이, 사슴, 개, 개구리, 말, 배, 트럭의 10개 클래스)하는 모델 A가 이 있다고 하자. 그런 다음, 분류된 CIFAR10 이미지에서 자동차의 종류를 분류하는 모델인 B를 학습시킨다고 할 때, 학습된 모델 A에서의 일부분(lower layer)을 재사용..