linear
활성화 함수 activation function
신경망모델의 각 layer에서는 input 값과 W(가중치)를 곱하고 b(편향)를 더하는 연산을 통해 a=WX+b를 계산하고 마지막에 활성화 함수를 거쳐 h(a)를 출력한다. 이렇게 각 layer마다 활성화 함수를 거쳐 출력하는 이유가 무엇일까? XOR문제 - 선형분류기의 한계 인공신경망에 대한 연구가 한계를 맞게된 첫 과제는 바로 XOR문제였다. 아래 그림에서 확인할 수 있듯이 기존의 퍼셉트론은 AND와 OR문제는 해결할 수 있었지만 선형 분류기라는 한계에 의해 XOR과 같은 non-linear한 문제는 해결할 수 없었다. 그리고 이를 해결하기 위해 나온 개념이 hidden layer이다. 그러나 이 hidden layer도 무작정 쌓기만 한다고 해서 퍼셉트론을 선형분류기에서 비선형분류기로 바꿀 수 있..